Section 9.3 Negation and Conjunction

Definition: Negation ~ A negation gives the opposite truth value of a statement. So if a proposition is true then the negation will be false. If the proposition is false then the negation is true. In symbols the negation of P is denoted as $\neg P$

Example: Determine the negation of the following statements and the truth value of the negation.

a) School starts at 7:40.

School does not start at 7:40

False

b) There are 30 days in the month of February.

There are not 30 days in the month of February

True

Example: Determine the solution set of the given statement. Then give the negation of the statement and its solution set.

a) $2x \le 10$

Solution set of given statement: $\{x: x \in \mathbb{R}, x \leq 5\}$

Negation of statement: 2x > 10

Solution set of the negation: $\{x: x \in \mathbb{R}, x > 5\}$

Notice that the solution sets of negations are complements.

Definition: Conjunction ~ A conjunction is formed by combining two proposition with the word "and". A conjunction is only true when both P and Q (called the conjuncts) are true. In symbolic form the conjunction of P and Q is denoted as $P \land Q$.

Example: Translate the $(P \land Q) \Rightarrow R$ into words and then give its truth value:

P: The temperature is in the 90's

- Q: It is sunny
- R: We are going swimming

Answer:

If the temperature is in the 90's and it is sunny, then we are going swimming.

Examples: Let p represent a true statement and q represent false statements. Find the truth value of each compound statement.

1. p∧q

Answer: $T \wedge F = F$

2. $\neg p \land \neg q$

Answer: $F \wedge T = F$

3. $p \land \neg q$

Answer: $T \wedge T = T$

4. $p \Leftrightarrow q$

Answer: $T \Leftrightarrow F = F$

5. $p \Leftrightarrow \neg q$

Answer: $T \Leftrightarrow T = T$