7.5 Rates of Change and Motion in a Line

We have already learned that a derivative is the slope of a line, but what's the difference between
average and instantaneous rates of change‘7
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TDefinition: The average rate of change is slope of the secant line, and thus, 31mply the slop
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formula you learned in Algebra, Ch—atlg—eﬁ.
| change in x |
| Definition: The instantaneous rate of change is the slope of the fangent line, thus, the |
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Exammple 16: A diver jumps from a platform at t = 0 seconds. The distance of the diver
above water level at time ¢ is given by s(t) = -4.9t + 4.9t + 10, where s is in meters.

a.) Find the average velocity of the diver over the given time intervals.
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b.) Find the instantaneous velocity of the diver at t = 1 second.
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*Food for thought? What do you notice about part a, compared with part b? 7 o ‘)\t to™L k-
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Example 17 During one month, the temperature of the water in a pond is modeled by the
function C(t) = 20 + 9te ~*3, where t is measured in days and C is measured in degrees Celcius.

a. Find the average rate of change in temperature in the first 15 days of the month. o C
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b. Find the rate of change in temperature on day 15. Clb)=20+ate ? %
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Definition: If an object is moving along a straight line, its position from an origin at any time
t can be modeled by s(t), called the displacement function. (In Calculus, we called this the
position function).

Definition: The initial position is the position when t = 0, hence, s(0).
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i As previously stated, the instantaneous rate of change of displacement is the velocity function.
I v =s'(t).

i m> 0, the object is moving to the right (or up).

! When v(t) <0, the object is moving to the left (or down).

When v(t) = 0, the object is at rest.
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Speed is the absolute value of velocity.
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Example 18: A particle moves in a straight line with a displacement of s meters t seconds
after leaving a fixed point. The displacement function is given by s(t) = 2t> - 21> + 60t + 3, for

t=0.
a.) Find the velocity of the particle at any time t.

V) =S €)= bt =42t +eo

b.) Find the initial position and initial ve1001ty of the particle.

S(OB = 3m \//o\ s'(0) = GO m/s

c.) Find when the particle is at rest. /, 62—— ‘7.6 o=
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d.) Find when the particle is moving left and when the particle is moving right.
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e.) Draw a motion diagram for the particle. =02 1 (::/_;Q =2
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! As previously stated, the instantaneous rate of change of displacement is the acceleration

! function. a(t) =s'"'(t). i
| When a(t) > 0, the velocity of the object is increasing. ;
! When a(t) <0, the velocity of the object is decreasing. i
When a(t) = 0, the velocity is constant. ;

*When velocity and acceleration have the same sign, the object in motion is speeding up*
*When velocity and acceleration have different signs, the object in motion is slowing down*
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Example 19: For the displacement function from Example 18, s(t) = 2t° - 21t% + 60t + 3, with
s in meters and t > 0 seconds, we found that v(t) = 6t* - 42t + 60.

a.) Find the average acceleration of the particle from t = 1 second to t = 4 seconds.
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b.) Find the instantaneous acceleration of the particle at t = 3 seconds. Explain the meaning of

Youéz ar(lsvgi \/ 63 fj - L( o) | )
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Example 20: For the displacement function from Example 18, s(t) = 2t> - 21> + 60t + 3,
with s in meters and t > 0 seconds, we found that v(t) = 6t* - 42t + 60 and a(t) = 12t - 42.

a.) Find the speed of the particle at t = 3 seconds and determine whether the particle is speeding
up or slowing down when t = 3 seconds.
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b.) During 0 < t < 10 seconds, find the intervals when the particle is speeding up and when

it is slowing down. \ (Jb
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