7.2 Tangent Line and Derivative of xn (Day 2)

From your investigation, you hopefully discovered our first rule for derivatives.

Power Rule: If $f(x) = x^n$, then $f'(x) = nx^{n-1}$, where $n \in \text{Real Numbers}$

Example 5: Use the power rule to find the derivative of each function below.

a.)
$$f(x) = x^{12}$$

 $f'(x) = (2x)^{11}$

b.)
$$f(x) = \frac{1}{x^3} = x^{-3}$$

 $f'(x) = -3x^{-4} = \frac{-3}{x^4}$

c.)
$$f(x) = \sqrt{x} = x^{\frac{1}{2}}$$

$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$$

d.)
$$f(x) = \frac{1}{\sqrt[3]{x}} = x^{-\frac{1}{3}}$$

 $f(x) = -\frac{1}{3}x^{-\frac{4}{3}} = \frac{1}{3\sqrt[3]{x^4}} = \frac{1}{3\sqrt[3]{x^4}}$

Definition: The process of finding the derivative of a function is called <u>differentiation</u>.

More derivative Rules:

Think about y = c, where c is a constant. Think about the slope.

Constant Rule: If f(x) = c, where c is any real number, then f'(x) = 0.

The Constant Multiple Rule: If c is a constant and f is a differentiable function, then $\frac{d}{dx}[cf(x)] = c \frac{d}{dx}f(x)$

The Sum Rule: If f and g are both differentiable, then

$$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$$

The Difference Rule: If f and g are both differentiable, then

$$\frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx}f(x) - \frac{d}{dx}g(x)$$

Example 6: Differentiate each function.

a.)
$$f(x) = 4x^3 + 2x^2 - 3$$

 $f'(x) = \{2x^2 + 4x\}$
c.) $f(x) = (x - 2)(x + 4) = x^2 + 2x - 8$
 $f'(x) = 2x + 2$

b.)
$$f(x) = 3\sqrt[5]{x} + 8 = 3x^{1/5} + 8$$

 $f'(x) = \frac{3}{5}x^{-4/5} = \frac{3}{5x^{4/5}} \text{ or } \frac{3}{5\sqrt[5]{x^4}}$
d.) $f(x) = \frac{4x^3 + 2x^2 - 3}{x} = 4x^2 + 2x - 3x^{-1}$
 $f'(x) = 8x + 2 + 3x^{-2}$
 $= 8x + 2 + \frac{3}{x^2}$

Equations of Tangent and Normal Lines

Definition: A tangent line is a line that touches a curve at a single point on a curve. The slope of the tangent line at a given x-value can be found by finding the value of the derivative of the function at that given x-value.

Definition: A normal line is a line at a point on a curve that is perpendicular to the tangent line at that point. The slope of the normal line at a given x-value can be found by finding the opposite reciprocal value of the derivative of the function at that given x-value.

Example 7: Write an equation for each line.

a.) The tangent line to the curve $f(x) = x^2 + 1$ at (1,2). So ... x = 1MM F'(x) = 7x m = f'(1) = 2(1) = 2

y-2=2(x-1) < 18 normally leaves it in pt/slope form!

b.) The normal line to the curve $f(x) = 2\sqrt{x}$ when x = 9. If x = 9 then y = 219 = 6 pt (9,6) f(x) = 2x 1/2

f'(x)=1x-1/2=

m=f'(9)= 1 perp slope = -3

c.) The tangent and normal lines to the curve $f(x) = x + \frac{27}{2x^2}$ when x = 3. So $f(x) = 3 + \frac{27}{2(9)} = \frac{9}{2}$ p + (3, 9/2) $f(x) = x + \frac{27}{2}x^{-2}$

$$f'(x) = 1 - 27 \times^{-3} = 1 - \frac{27}{x^3}$$

 $f'(x) = 1 - 27 \times^{-3} = 1 - \frac{27}{x^3} = 0$

tangent line $y-y_1 = (x-x_1)$ y-9/2 = 0(x-3) or y = 9/2 (ther. Line) normal line

perp slipe = undefined ... so vertical line x = 3

d.) The tangent to $f(x) = x^3 - 3x^2 - 13x + 15$ that is parallel to the tangent at (4, -21).

* one tangent goes through x=4 with a certain Slope. Find another x with The Same Slope!

 $f'(x) = 3x^2 - 6x - 13$ $f'(4) = 3(4)^2 - 6(4) - 13 = 11$

 $\begin{aligned}
 &| 1 = 3x^2 - 6x - 13 \\
 &| 0 = 3x^2 - 6x - 24 \\
 &| 0 = x^2 - 6x - 24 \\
 &| 0 = x^2 - 2x - 8
 \end{aligned}
 \quad
 \begin{aligned}
 &| x = 4, x = -2 \\
 &| f(-2) = 21 \\
 &| m = 11 \text{ pt}(-2, 21) \\
 &| 0 = (x - 4)(x + 2) \\
 &| y - 21 = 11(x + 2)
 \end{aligned}$ 6+ f/x)=11 11= 3x2-6x-13