7.1 Limits and Convergence

Definitions: The term <u>convergent</u> is used for sequences where the term number in the sequence increases and approaches a fixed number known as a limit. All other sequences are divergent.

Read as "The limit as n approaches infinity of un equals L. Notation: $\lim_{n\to\infty} u_n = L$

Example 1: Determine whether each sequence is convergent or divergent. If the sequence is convergent, give the limit of the sequence.

a.) 0.3, 0.33, 0.333, 0.3333, ... Convergent $\lim_{x\to\infty} f(x) = \frac{1}{3}$ b.) 2, 4, 8, 16, ... $\lim_{x\to\infty} f(x) = \frac{1}{3}$ c.) $\frac{1}{5}$, $\frac{6}{25}$, $\frac{31}{125}$, $\frac{156}{625}$, $\frac{781}{3125}$, ... $\lim_{x\to\infty} f(x) = \frac{1}{3}$ d.) 1, -1, 1, -1, ... $\lim_{x\to\infty} f(x) = \frac{1}{3}$

What do limits mean?

 $\lim_{x \to \infty} f(x) = L$ means that the function f(x) is headed towards L when the x-values get closer and closer to x = c.

Remember, a limit is where function's headed, NOT where the function's at.

Remember, a limit only exists when the limit from the left = limit from the right

Example 2: Using a GCD, examine each function graphically and numerically. Find the mur B limit or state that it doesn't exist.

a.)
$$\lim_{x\to 2} x$$

b.)
$$\lim_{x\to 1} \frac{x^2-1}{x-1}$$

it or state that it doesn't exist.

a.)
$$\lim_{x \to 2} x^2$$
b.) $\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$
c.) $\lim_{x \to 0} f(x)$; where $f(x) = \begin{cases} 1 & \text{for } x \ge 0 \\ -1 & \text{for } x < 0 \end{cases}$

What about using algebra?

$$\frac{x^{2}-1}{x-1} = \frac{(x+1)(x+1)}{(x+1)} = x+1$$

** approaches 2 from both sides ** approaches -1 from left and 1 from right

$$\frac{\chi^2-1}{\chi-1} = \frac{\chi+1}{\chi-1} = \chi+1$$
** must be some an both sides

Finding Limits Algebraically Involving Infinity

Limits to ∞ or $-\infty$ can be found by plugging in very large or very small (very large negatives) numbers to see the value your function approaches.

Example: Use a calculator to estimate $\lim_{x\to\infty} \left[\sqrt{x^2+1} - (x+1) \right]$

Since my limit is approaching ∞ , plug in large values (for $-\infty$ use small values... which would be large negative values)

x	100	1000	10,000	100,000
y	-0.995000125	9995000001	99995	999995

My limit appears to be -1.

You can use an algebra "shortcut" to evaluate at infinity as well...

Finally, we are interested also in problems of the type: $\lim_{x\to\pm\infty} f(x)$. Here are the rules:

Write f(x) as a fraction. 1) If the highest power of x appears in the denominator (bottom heavy), $\lim_{x \to \infty} f(x) = 0$

- 2) If the highest power of x appears in the numerator (top heavy), $\lim_{x \to \pm \infty} f(x) = \pm \infty$ plug in very large or small numbers and determine the sign of the answer
- 3) If the highest power of x appears both in the numerator and denominator

(powers equal), $\lim_{x \to \pm \infty} f(x) = \frac{\text{coefficient of numerator's highest power}}{\text{coefficient of denominator's highest power}}$

Example 1:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{4x^3 - 4x^2 + 5}{6x^2 - 7x + 2}$$

Using the shortcut above, the higher power of x is on the top so the limit is ∞ or $-\infty$

Use the graph or a table of values to evaluate the limit at ∞ to tell for sure.

Look at the far right hand side or plug in a BIG positive number (since the limit is to ∞)

Or
$$f(10,000) = 6666.8$$

In this case, since the right is headed up and $f(\infty)$ is a big positive number, the limit is ∞ .

Example 2:

$$\lim_{x \to +\infty} f(x) = \frac{2x^3 - 4x^2 + 5}{6x^5 - 7x^3 + 2x^2 - 4x + 1}$$

In this case since the higher power of x is on the bottom, the limit is 0.

You can verify via graph and algebra.

In this case look at the right hand side of the graph or plug in a big positive number since the limit is to ∞ .

Or f(10,000) = 3.3E-9 which means 3.3×10^{-9} or essentially 0.

Example 3:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{4x^3 - 3x^2 + 2}{7x^3 + 5x^2 - x + 6}$$

In this case since the powers of x are the same on the top and bottom, the limit is the ratio of the leading coefficients.

So the limit is 4/7

You can verify via graph and algebra.

In this case look at the left hand side of the graph or plug in a big negative number since the limit is to $-\infty$. Since the limit is a yucky number, you will only get an estimate using these methods.

Limit Practice...

Use the graph of f(x) at the left to answer the questions below.

a)
$$f(1) = 0.5$$
 (approx.)

b)
$$f(3) = 0$$

c)
$$f(0) = DNE$$

$$d) \quad \lim_{x \to 0^-} f(x) = 0$$

$$e) \quad \lim_{x \to 0^+} f(x) = 0$$

$$f) \quad \lim_{x\to 0} f(x) = 0$$

g)
$$\lim_{x\to 2^-} f(x) = \infty$$

$$h) \quad \lim_{x \to 2^+} f(x) = -\infty$$

i)
$$\lim_{x\to 2} f(x) = DNE$$

$$j) \lim_{x\to -\infty} f(x) = -\infty$$

$$k) \quad \lim_{x \to \infty} f(x) = 1$$