Section 6.6 The Geometry of Three-Dimensional Solids

The following formulas are given to you in your formula booklet...

Area of the curved surface of a cylinder	$A = 2\pi rh$, where <i>r</i> is the radius, <i>h</i> is the height		
Surface area of a sphere	$A = 4\pi r^2$, where <i>r</i> is the radius		
Area of the curved surface of a cone	$A = \pi r l$, where r is the radius, l is the slant height		
Volume of a pyramid	$V = \frac{1}{3}Ah$, where A is the area of the base, h is the vertical height		
Volume of a cuboid	$V = l \times w \times h$, where <i>l</i> is the length, <i>w</i> is the width, <i>h</i> is the height		
Volume of a cylinder	$V = \pi r^2 h$, where <i>r</i> is the radius, <i>h</i> is the height		
Volume of a sphere	$V = \frac{4}{3}\pi r^3$, where <i>r</i> is the radius		
Volume of a cone	$V = \frac{1}{3}\pi r^2 h$, where <i>r</i> is the radius, <i>h</i> is the vertical height		
Volume of a prism	V = Ah, where A is the a	rea of cross-section, h is	the height
Length Cuboid	Height Bases Width	Lateral Edges Lateral Faces Pentagonal Prism	Bases Bases Triangular Prism
radius height	enter radius great circle	height radius	Height Slant height Base
Cylinder	Sphere	Cone	Pyramid

Example: Find the surface area and volume of the given pyramid correct to 3 sig figs. Let the units be in mm.

Surface Area: In this case... the area of the square base and the 4 triangular sides.

First find the slant height. This is the height of each triangle: $6^2 + 5^2 = l^2 \rightarrow l = \sqrt{61}$ Area of 4 triangles: $4\left(\frac{1}{2}(10)(\sqrt{61})\right)$ 156 mm²

Area of base: $(10)(10) = 100 \text{ mm}^2$

Surface Area = 256 mm^2

Volume: The height of the pyramid is 6 mm.

The area of the base is (10)(10) = 100

So the volume is...

$$V = \frac{1}{3}Ah = \frac{1}{3}(100)(6)$$
$$= \frac{1}{3}(600) = 200 \text{ mm}^{3}$$

Example: Find the surface area and volume of the given prism correct to 3 sig figs.

Surface Area: In this case we have two congruent triangular bases and three rectangular faces.

Area of 2 bases: 2(1/2bh) = 2(1/2(12)(16))= 192 cm²

Area of faces:

$$(12)(9) + (9)(16) + (20)(9)$$

 $= 108 + 144 + 180 = 432 \text{ cm}^2$

Total Surface Area: $192 + 432 = 624 \text{ cm}^2$ Volume: In this case the cross-section is a base. So the area of the base is:

$$\frac{1}{2}bh = \frac{1}{2}(12)(16) = 96$$

The height of the prism is the distance between the two bases... so h = 9 cm

So the volume is...

$$V = Ah = (96)(9)$$

Find the surface area and volume of the given shape correct to 3 sig figs.

8 cm 10 cm Surface Area: Cone (minus top) + Half a Sphere Cone (Slanted Area Only): Slant Height: $8^2 + 10^2 = l^2 \rightarrow l = \sqrt{164}$ $A = \pi r l = \pi(8)(\sqrt{164}) = 322$ Half a Sphere: $A = \frac{1}{2}(4\pi(8)^2) = 128\pi = 402$

Total Surface Area: $322 + 402 = 724 \text{ cm}^2$ Volume: Cone + Half a Sphere Cone: $V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi (8)^2 (10)$ $= 670 \text{ cm}^3 (3 \text{ sig figs})$ Half a Sphere: $V = \frac{1}{2} (\frac{4}{3}\pi (8)^3) = 1072$ Total Volume: 1742 cm³

or 1740 cm³