IB Math Studies

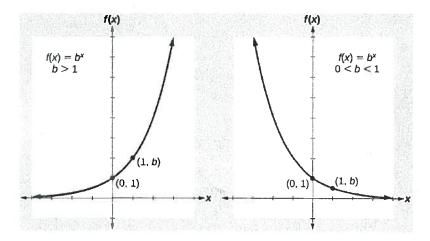
Section 4.8 & 4.9: Exponential Functions

An exponential function with the form

$$f(x) = b^x, b > 0, b \neq 1$$

has these characteristics:

- horizontal asymptote: y = 0
- •domain: $(-\infty, \infty)$
- •range: (0,∞)
- •x-intercept: none
- y-intercept: (0,1)
- increasing if b > 1
- decreasing if b < 1



Since the domain is all Real numbers, it is possible to have negative and fractional exponents.

Example: $9^{-2} = \frac{1}{9^2} = \frac{1}{81}$ $9^{\frac{1}{2}} = \sqrt{9} = 3$ $9^{-\frac{1}{2}} = \frac{1}{\sqrt{9}} = \frac{1}{3}$

$$9^{\frac{1}{2}} = \sqrt{9} = 3$$

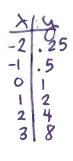
$$9^{-\frac{1}{2}} = \frac{1}{\sqrt{9}} = \frac{1}{3}$$

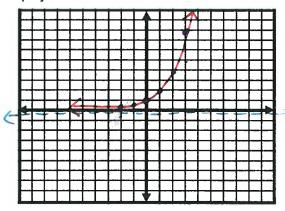
$$64^{\frac{1}{3}} = \sqrt[3]{64} = 4$$

$$64^{\frac{1}{3}} = \sqrt[3]{64} = 4$$
 $64^{\frac{2}{3}} = (\sqrt[3]{64})^2 = 4^2 = 16$

Graphing Exponential Functions

ex. Graph $y = 2^x$





State the following:

Domain: (- 🛩

Range: (O

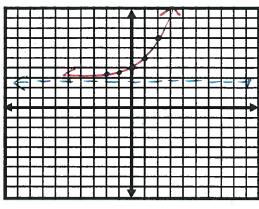
Asymptote: ____

Intercepts:

INCREASING or DECREASING

Just like linear or quadratic functions, you can stretch, compress, flip, or shift exponential functions. When you shift a graph vertically, you shift the horizontal asymptote in the same way.

ex. Graph y = 2x + 3 < this is the last shifted



State the following:

Domain: (- o

Range:

Asymptote:

Intercepts:

INCREASING or DECREASING

ex. Gra	aph y	y =	3(1/	(2) ^X	-					
× 3 -2 12 -1 6 0 3 1 0.75 2 0.75 3 .375										->

State the following:

Domain: (

Range:

Asymptote:

Intercepts:

INCREASING or DECREASING

SOLVING EXPONENTIAL EQUATIONS – 2 METHODS

- 1. Solving Exponential Equations Graphically
- 2. Solving Exponential Equations Using logarithms

Example: Solve the equation $2^x - 1 = 10$

- 1. Solve Graphically: The easiest way to solve this equation graphically is to use your TI-83 calculator and let $Y_1 = 2^x - 1$ and $Y_2 = 10$ and find the point of intersection of the two graphs, which is approx. 3.46
- 2. Solving Using Logarithms: $2^{x} 1 = 10$

Get the exponential expression by itself $2^{x} = 11$

Take the log of both sides of the equation $\log 2^{x} = \log (11)$

> Using the properties of logs $x \log 2 = \log (11)$

Divide both sides by the log 2 $x \log 2 = \log(11)$ log2

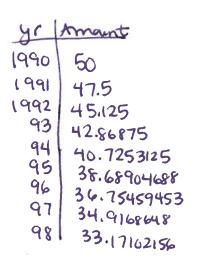
x = 3.46

Example: A radioactive element decays in such a way so that the amount present each year is 0.95 of the amount present the previous year. At the start of 1990, there were 50 mg of the element present.

- a) Produce a table of values showing how much of the element is present at the start of each year from 1990 to 1998.
- b) The rule for this situation is given by $N = k \times a^t$, where N mg is the amount of element present t years after the start of 1990. Find the value of a and k. $N = 50 \cdot (.95)^{t}$
- c) Sketch the graph of $N = k \times a^t$.
- d) How long will it be before there is 25 mg of this element remaining?

	10	_	•		5	01		.11	•	/11	VII	10	114	•	Ų,		uı	***	ع	۶.	
		10																			y=25
52	F	Н		\dashv			\exists	Ŧ	7	7	7	4	7	7	_	F	F	F	F	F	
48	F	H	\exists	7	\exists	\exists	7	7	7	7	7	7	7	7		F	F	F	F	F	X=13.5ys.
44	F	\Box	7	,	\exists	\neg	7	7	7	7	7	7	7	7		F	F	F	F	F	
40	F		\exists	7	Į		7	#	7	7	7	7	7	7	_	F	F	F			
360	F		\exists			4	4	#	#	7		7	7	7		F	F	F			10 00
32	Ħ	1			\dashv		1	4	_	7	#	#	#	4	_	~			8	2	e: 12 yrs.
28	H	H	\exists		\exists			#	1	\					•	3	1	`			
							- 1	- 1	•		•		//	- 1							E .

Graph 4=50 (.95)x



Example: Five hundred dollars is deposited into a bank account that pays 5.40% interest per annum.

How much money will there be in the account at the end of 6 years if the interest is compounded annually? $FV = PV(1 + \frac{5.4}{100})^6 = 500(1.054)^6 = 685.51$

8

b) How long will it be before the money in the account is doubled?

1000 = 500 (1.054)x x=13.2 yrs.

10 12 14 16 18

c) Show the behaviour of the compounding using a graph.

