13.3 Gradients of Curves and Equations of Tangents and \mathcal{N} Normals

Equations of Tangent and Normal Lines

Definition: A tangent line is a line that touches a curve at a single point on a curve. The slope of the tangent line at a given x-value can be found by finding the value of the derivative of the function at that given x-value.

Definition: A normal line is a line at a point on a curve that is perpendicular to the tangent line at that point. The slope of the normal line at a given x-value can be found by finding the opposite reciprocal value of the derivative of the function at that given x-value.

Example 1: Find the gradient of the tangent and normal lines of $f(x)=2 x^{2}-5 x+1$ at $x=3$
First find the derivative... $\quad f^{\prime}(x)=4 x-5$
Gradient of Tangent Line at $x=3$
$f^{\prime}(3)=4(3)-5=7$

Gradient of Normal Line at $x=3$
Opposite Reciprocal of Tangent Line: $-1 / 7$

Example 2: Find the value(s) of x that give a horizontal tangent line to $f(x)=2 x^{2}-5 x+1$
A horizontal line has a slope of 0 . The slope (gradient) is the value of the derivative at a particular x-value. So we need to find the x-value(s) that gives the derivative a value of 0 .
$f^{\prime}(x)=4 x-5 \quad \Rightarrow \quad 4 x-5=0 \quad \Rightarrow \quad x=5 / 4$

Example 3: State whether the functions below are increasing (positive slope) or decreasing (negative slope) at $x=2$

a)
b) $f(x)=-2 x^{2}-3 x-5$

In this case find the derivative.
Then check the sign of the derivative at $x=2$.
$f^{\prime}(x)=-4 x-3$
$f^{\prime}(2)=-4(2)-3=-11$
So since $f^{\prime}(2)$ is negative, the function is decreasing at $x=2$.

Example 4: Write an equation for each line. Then graph the line and original function on the same grid.
a.) The tangent line to the curve $f(x)=x^{2}+3$ at $(1,4)$.

First find the derivative. Then find $f^{\prime}(1)$. This will be the slope of the tangent line.

$$
f^{\prime}(x)=2 x \quad \Rightarrow \quad f^{\prime}(1)=2(1)=2 \quad \Rightarrow \quad \text { so } m=2
$$

Now write the equation using your slope and the given point

$$
\begin{array}{c|cc}
y-y_{1}=m\left(x-x_{1}\right) \\
y-4=2(x-1) & \begin{array}{cc}
\text { Plot1 P1ot2 } & \text { Plot3 } \\
\text { - } & \\
y-4=2 x-2
\end{array} &
\end{array}
$$

b.) The normal line to the curve $f(x)=2 \sqrt{x}$ when $x=9$.

First find $f(9): f(9)=2 \sqrt{9}=2(3)=6$
So the point we are using is $(9,6)$

Then find the derivative. Then find $f^{\prime}(9)$. The opposite reciprocal will be the slope of the normal line.
$f(x)=2 \sqrt{x}=2 x^{\frac{1}{2}}$
$f^{\prime}(x)=1 x^{-\frac{1}{2}}$
$f^{\prime}(9)=(9)^{-\frac{1}{2}}$
You can just type this in your calculator... $9^{\wedge}(-1 / 2)=1 / 3$. So the slope of the normal line is -3 .

Now write the equation using your slope and the given point

$$
\begin{gathered}
y-6=-3(x-9) \\
y-6=-3 x+27 \\
y=-3 x+33
\end{gathered}
$$

Plot1 Plot2 Plot3

$$
\text { ■ } Y_{2} \text { 日 }-3 X+33
$$

