13.3 Gradients of Curves and Equations of Tangents and Normals

Equations of Tangent and Normal Lines

First find the derivative... f'(x) = 4x - 5

Definition: A <u>tangent line</u> is a line that touches a curve at a single point on a curve. The slope of the tangent line at a given *x*-value can be found by finding the value of the derivative of the function at that given *x*-value.

Definition: A <u>normal line</u> is a line at a point on a curve that is perpendicular to the tangent line at that point. The slope of the normal line at a given *x*-value can be found by finding the opposite reciprocal value of the derivative of the function at that given *x*-value.

Example 1: Find the gradient of the tangent and normal lines of $f(x) = 2x^2 - 5x + 1$ at x = 3

Gradient of Tangent Line at $x = 3$	Gradient of Normal Line at $x = 3$
f'(3) = 4(3) - 5 = 7	Opposite Reciprocal of Tangent Line: $-1/_7$

Example 2: Find the value(s) of x that give a horizontal tangent line to $f(x) = 2x^2 - 5x + 1$

A horizontal line has a slope of 0. The slope (gradient) is the value of the derivative at a particular x-value. So we need to find the x-value(s) that gives the derivative a value of 0.

 $f'(x) = 4x - 5 \qquad \Rightarrow \qquad 4x - 5 = 0 \qquad \Rightarrow \qquad x = 5/4$

Example 3: State whether the functions below are increasing (positive slope) or decreasing (negative slope) at x = 2

Example 4: Write an equation for each line. Then graph the line and original function on the same grid.

a.) The tangent line to the curve $f(x) = x^2 + 3$ at (1, 4).

First find the derivative. Then find f'(1). This will be the slope of the tangent line.

$$f'(x) = 2x \implies f'(1) = 2(1) = 2 \implies \text{so } m = 2$$

Now write the equation using your slope and the given point

b.) The normal line to the curve $f(x) = 2\sqrt{x}$ when x = 9.

First find f(9): $f(9) = 2\sqrt{9} = 2(3) = 6$

So the point we are using is (9, 6)

Then find the derivative. Then find f'(9). The opposite reciprocal will be the slope of the normal line.

$$f(x) = 2\sqrt{x} = 2x^{\frac{1}{2}}$$
$$f'(x) = 1x^{-\frac{1}{2}}$$
$$f'(9) = (9)^{-\frac{1}{2}}$$

You can just type this in your calculator... $9^{(-1/2)} = 1/3$. So the slope of the normal line is -3.

Now write the equation using your slope and the given point

