Section 13.2 Solving Equations using the Unit Circle

Suppose you want to solve the equation $\sin x = \frac{1}{2}$ You must give EVERY place where the sine is ½

There are actually an infinite number of solutions to this equation. You must use your reference angle (the angle whose sine is ½ in Quad I) and what you know about where sine is POSITIVE to name other angles with the same sine.

Suppose your domain is $-360^{\circ} \le \theta \le 360^{\circ}$

Your reference angle is 30° and sine is positive in Quad I and II.

That means $x = 30^{\circ}$, 150° , -210° , -330°

Example: Solve the given equations for the given domain

a) $\sin x = -\frac{\sqrt{3}}{2}, -2\pi \le \theta \le 2 \pi$

b) $3 \tan x - \sqrt{3} = 0$, $-\pi \le \theta \le \pi$

c) $\cos^2 x = \frac{3}{4}$, $-180^{\circ} \le \theta \le 720^{\circ}$

 $(05 \ X = \frac{1}{12} = \frac{1}{12} = \frac{1}{2}$

All Quads; Ref; 30°

30°, 390°, -330°, -690° 150°, 510°, -210°, -570° 210°, 570°, -150°, -510° 330°, 690°, -30°, -390°

d) $\sin x = 0$, $-360^{\circ} \le \theta \le 360^{\circ}$

Homework C

Example: Solve each equation for the given domain.

a)
$$\sin 2x = 0.5$$
, $-180^{\circ} \le x \le 180$

Pretend this is $\sin \theta = 0.5$

This would be
$$\theta = 30^{\circ}$$
, 150° , -210° , -330°

But
$$\theta = 2x$$

So
$$2x = 30^{\circ}$$
, 150° , -210° , -330°

So
$$x = 15^{\circ}$$
, 75° , -105° , -165°

c)
$$\sin \theta = \cos \theta$$
, $-\pi \le \theta \le \pi$

This is a different kind of equation. Divide both sides by $\cos \theta$

$$\frac{\sin \theta}{\cos \theta} = 1$$
$$\tan \theta = 1$$

reference angle = $\pi/4$ in Quad I and III

$$\theta = \pi/4, -3\pi/4$$

b)
$$2\cos(x/2) = -\sqrt{3}$$
, $-360^{\circ} \le x \le 360$

Pretend this is $\cos \theta = -\sqrt{3}/2$

This would be
$$\theta = 150^{\circ}$$
, 210° , -150° , -210°

But
$$\theta = x/2$$

So
$$x/2 = 150^{\circ}$$
, 210° , -150° , -210°

So
$$x = 300^{\circ}$$
, 420° , -300° , -420°

So
$$x = 300^{\circ}$$
, -300° * must be between $-360^{\circ} \le x \le 360^{\circ}$

d)
$$2\sin^2\theta - 3\sin\theta - 2 = 0$$
, $0 \le \theta \le 2\pi$

Pretend this is $2x^2 - 3x - 2 = 0$ and factor

$$(2x+1)(x-2)=0$$

$$x = -\frac{1}{2}$$
 and $x = 2$

So...
$$\sin x = -\frac{1}{2}$$
 $\sin x = 2$

A

To solve
$$\sin x = -\frac{1}{2}$$
 we get a ref of $\pi/6$
 $x = 7\pi/6$ and $11\pi/6$

$$\sin x = 2$$
 has no solution