12.2 Addition and Subtraction of Vectors

Objectives:

- Add and subtract vectors in rectangular form
- Use the zero vector to determine equilibrium
- Use vectors to deduce geometric results

Definitions: Vector addition corresponds to combined or net effects.

For example, if \mathbf{v} and \mathbf{w} are force vectors, then the resultant vector $\mathbf{v} + \mathbf{w}$ represents net force. Vector subtraction would be defined as $\mathbf{v} - \mathbf{w}$ or as adding a negative vector $\mathbf{v} + (-\mathbf{w})$.

Arithmetically: Given the vectors $\mathbf{v} = 3\mathbf{i} + 4\mathbf{j}$ and $\mathbf{w} = -2\mathbf{i} + 5\mathbf{j}$, find the following...

$$\mathbf{v} + \mathbf{w}$$
 $\mathbf{v} - \mathbf{w}$ $2 \mathbf{v} + \mathbf{w}$ $(3\mathbf{i} + 4\mathbf{j}) + (-2\mathbf{i} + 5\mathbf{j})$ $(3\mathbf{i} + 4\mathbf{j}) - (-2\mathbf{i} + 5\mathbf{j})$ $2(3\mathbf{i} + 4\mathbf{j}) + (-2\mathbf{i} + 5\mathbf{j})$ $(6\mathbf{i} + 8\mathbf{j}) + (-2\mathbf{i} + 5\mathbf{j})$ $4\mathbf{i} + 13\mathbf{j}$

Geometrically: Vector addition can be thought of as first move along vector \mathbf{v} followed by along vector \mathbf{w} . This is the triangle law. This is good for representing sequential effects and displacements. Because vector addition is commutative $(\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v})$, it also gives rise to the parallelogram law. This is better for representing simultaneous effects and net force.

Triangle Law

Parallelogram Law

The Zero Vector: In the figure at the right, $\mathbf{a} + \mathbf{b} = \mathbf{c}$. Since the overall journey results in returning to the starting position, the resultant vector \mathbf{c} must equal 0. This would be written as $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$

<u>Equilibrium</u> is the state where a number of forces are in balance. This would be an example of a resultant vector of 0.

The zero vector is written as such

$$\mathbf{0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 in two dimensions and $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ in three dimensions

Resultant Vector = 0

Geometrical Proofs: Using vector addition, subtraction, and scalar multiples to deduce some geometrical results.

Example: In the diagram at the right,

$$\overrightarrow{PR} = \mathbf{u}$$
 and $\overrightarrow{PQ} = 2\mathbf{v}$ and

M is the midpoint of RQ and N is the midpoint RM.

Find the following in terms of \mathbf{u} and \mathbf{v} .

a)
$$\rightarrow$$
 RQ

b)
$$\underset{RN}{\longrightarrow}$$

c)
$$\rightarrow$$
 PN

Solutions:

a)
$$\overrightarrow{RQ} = \overrightarrow{RP} + \overrightarrow{PQ}$$
 Triangle Law of Vector Addition
$$= \overrightarrow{PR} + \overrightarrow{PQ}$$
 Substitute a negative vector
$$= -\mathbf{u} + 2\mathbf{v}$$
 Substitute
$$= 2\mathbf{v} - \mathbf{u}$$

b)
$$\overrightarrow{RN} = \frac{1}{4} \overrightarrow{RQ}$$

$$= \frac{1}{4} (2\mathbf{v} - \mathbf{u})$$

$$= \frac{1}{2} \mathbf{v} - \frac{1}{4} \mathbf{u}$$

c)
$$\overrightarrow{PN} = \overrightarrow{PR} + \overrightarrow{RN}$$

$$= \mathbf{u} + \left(\frac{1}{2} \mathbf{v} - \frac{1}{4} \mathbf{u}\right)$$

$$= \frac{3}{4} \mathbf{u} + \frac{1}{2} \mathbf{v}$$

Homework H