Section 11.6 Area of a Triangle

The traditional formula for the area of a triangle is $A = \frac{1}{2}bh$ where b is the base and h is the height perpendicular to the base)

Look at triangle ABC.

Its area would be defined as $A = \frac{1}{2} ah$

According to the triangle above $\sin C = \frac{h}{h}$. Similarly, $h = b \sin C$.

Substitute that expression for h.

Now it can be said that Area = $\frac{1}{2}a(b \sin C)$

Essentially if you know the lengths of two sides of a triangle and the measure of the angle between the two sides, you can find the area of the triangle. That would give me three formulas...

Area =
$$\frac{1}{2}ab\sin C$$
 Area = $\frac{1}{2}ac\sin B$ Area = $\frac{1}{2}bc\sin A$

Area =
$$\frac{1}{2}ac \sin B$$

Area =
$$\frac{1}{2}bc \sin A$$

Example: Find the area of the triangle below.

$$A = \frac{1}{2} (44.9)(50) \sin 42$$

$$A = 751.1 \text{ km}^2$$

Example: The triangle below has an area of 94 ft². Find \hat{B} .

$$A = \frac{1}{2} \text{ ac sinB}$$

 $94 = \frac{1}{2} (12)(18) \text{ sinB}$
 $94 = 108 \text{ sinB}$
 $\frac{47}{54} = \text{ sinB}$

Exercise 11J

Example: The triangle below has an area of 84 ft². Find the value of x.

