Mutually Exclusive Events

What are mutually exclusive events? P(ANB) = 0 events that cannot happen at the same time

Give an example. Turning left and turning right Tossing a coin

In general if A and B are mutually exclusive, then $P(A \cap B) =$ and

$$P(A \cup B) = P(A) + P(B)$$

Example: A bag of Jolly Ranchers has various flavors. You pull a piece of candy out at random. The probability of pulling a cherry candy is $\frac{5}{8}$, and the probability of a grape candy is $\frac{2}{8}$. Are picking a cherry or grape candy mutually exclusive? Why? What is the probability of drawing neither a cherry or grape candy?

mutually exclusives yes - you can't pull two different flavors $P(C \cup G) = \frac{5}{8} + \frac{2}{9} = \frac{45}{72} + \frac{16}{72} = \frac{61}{72}$ $P(CUG)' = 1 - \frac{61}{72} = \frac{11}{72}$

ASSIGNMENT EXERCISES 3D

Section 3.3 Sample Space Diagrams

List the sample space for rolling two six sided die.

ASSIGNMENT EXERCISES 3E

If you roll a die and toss a coin the evens are said to be independent.

- Two events A and B are independent if the occurrence of one does not affect the chance that the other occurs.

What would the sample space for rolling a dice and flipping a coin be?

- Let *H* stand for the event "coin lands on heads"
 - What is P(H)? \perp
- Let L stand for the even "dice roll less than 3"
 - o What is $P(L) = \frac{1}{3}$ or $\frac{2}{6} = \frac{1}{3}$
- Find $P(H \cap L)$

$$1+,2+$$
 $\frac{2}{12}=\frac{1}{6}$

- It is worth noting that even though we can use the sample space to find the answer to $P(H \cap L)$...

o
$$P(H \cap L) = P(H) \times P(L) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$$

Product Rule for Independent Events (or multiplication rule)

When two events A and B are independent

$$P(A \cap B) = P(A) \times P(B)$$

Example: A bag contains 7 blue balls and 5 orange balls. Another bag contains 2 blue balls and 5 orange balls. A ball is selected at random from each bag, find the probability that....

- a. Both balls are blue
- b. The balls are different colors
- c. At least one ball is blue.

(a)
$$P(B_1 \cap B_2) = \frac{7}{12} \cdot \frac{2}{6} = \frac{7}{12} \cdot \frac{1}{3} = \frac{7}{36}$$

ASSIGNMENT EXERCISES 3F

(12.
$$\frac{1}{3}$$
) + ($\frac{1}{12}$, $\frac{1}{3}$) = $\frac{19}{36}$ = $\frac{19}{36}$
(C) P(A+ least 1 Blue) means no double crange
SO P(A+ least 7 Blue) = $1 - P(0, 102)$
= $1 - (\frac{9}{12}, \frac{13}{8})$