## Subjective Probability

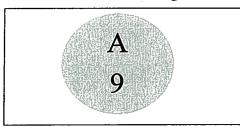
- What is subjective probability? You can't always repeat an experiment a large # of times. We estimate probability on subjective judgement experience intermation or belief
- Who will win this year's NA/FC Basketball game Based on previous years -- NA will win.

#### ASSIGNMENT EXERCISES 3A

#### Section 3.2

Venn Diagrams

There are 30 students in the IB Math SL classes. 9 of them have Mr. Kaiser. Show this information in a Venn Diagram



Set A is students who have Mr. Kaiser.

$$n(A) = 9$$

The rectangle represent the 30 students.

$$n(U)=30$$

If an IB Math SL student is chosen at random. The probability they have Mr. Kaiser,  $P(A) = \frac{9}{30} = \frac{3}{100}$ 

# Complementary event A'

- A' (read A prime) is the complement of set A
- The complement represents the number of times the event does not occur.

From the diagram we see that n(A') = n(U) - n(A)

30 - 9 = 2The probability that a student does not have Mr. Kaiser,

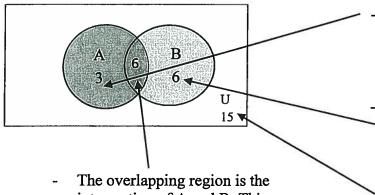
$$P(A') = \frac{21}{30} = \frac{7}{10}$$

- As an event, A, either happens or it does not happen:
  - 1. P(A) + P(A1) = 1
  - 2. P(A1) = 1-P(A)

Intersection and Union of Events

| Symbols                         | Meaning                |  |  |  |
|---------------------------------|------------------------|--|--|--|
| P(A)                            | Ponbability of A       |  |  |  |
| P(A')                           | Probability of not A   |  |  |  |
| P(AnB) - Intersection           | Probability of A AND B |  |  |  |
| $P(A \cup B) \rightarrow Onion$ | Probability of A OR B  |  |  |  |

Of the 30 students in IB Math SL 12 of them have Mr. Mumaw for chemistry. Of those, 6 have both Mr. Kaiser and Mr. Mumaw.



intersection of A and B. This represents students who have both Mr. Kaiser and Mr Mumaw. The region is written  $A \cap B$ .

(Event A) 9 Student have Mr. Kaiser. 6 Students have Mr. Kaiser And Mr. Mumaw, so 9-6=3 have just Mr. Kaiser.

(Event B) 12 students have Mr. Mumaw. 6 students have Mr. Mumaw and Mr. Kaiser, so 12-6=6

There are 30-3-6-6=15 students that do not have Mr. Kaiser or Mr. Mumaw.

Find the probability that a student chosen at random has both Mr. Kaiser and Mr. Mumaw.

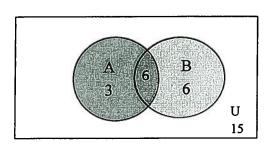
$$P(A \cap B) = \frac{6}{30} = \frac{1}{5}$$

Find the probability that a student chosen at random has Mr. Kaiser but not Mr. Mumaw.

$$P(A \cap B') = \frac{3}{30} = \frac{1}{10}$$

What does  $A' \cap B'$  represent?

Not Kaiser and Not Mumau



- The entire shaded region is the union of A and B. The region represents those students that have either Mr. Kaiser, Mr. Mumaw, or both.
- The region is written  $A \cup B$ .
- Notice that "or" in mathematics includes the possibility of both – we call it the "inclusive" or.

Find the probability that a student chosen at random has either Mr. Kaiser or Mr. Mumaw.

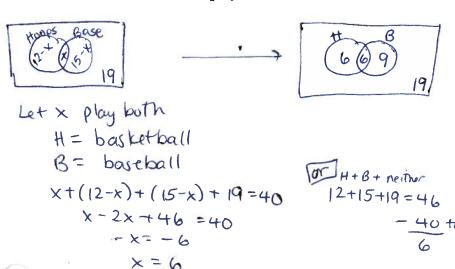
$$P(A \cup B)$$
  $\cap$   $(A \cup B) = 3 + 6 + 6 = 15$   
 $P(A \cup B) = \frac{\cap (A \cup B)}{\cap (\cup)} = \frac{15}{30} = \frac{1}{2}$   
How would you represent the probability of students that have Mr. Kaiser or do not have Mr.

Mumaw? Then find that probability.  $P(A \cup B')$ 

$$n(AUB') = 3+6+15=24$$
  $P(AUB') = \frac{n(AUB')}{n(u)} = \frac{24}{30} = \frac{4}{5}$ 

Example. In a group of 40 student, 12 play basketball, 15 play baseball, and 19 play neither.

- Draw a Venn diagram to show this information.
- Use the Venn diagram to find the probability that
  - a. A student chosen at random from the group plays basketball.
  - b. A student plays both basketball and baseball.
  - c. A student plays baseball but not basketball.
  - A student plays baseball or basketball.



© 
$$P(H) = \frac{12}{40} = \frac{3}{10}$$
  
©  $P(H \cap B) = \frac{6}{40} = \frac{3}{20}$   
©  $P(H' \cap B) = \frac{9}{40}$   
Ø  $P(H \cup B) = \frac{6+6+9}{40} = \frac{21}{40}$ 

#### ASSIGNMENT EXERCISES 3B

#### Addition Rule

The probability that a student has Mr. Kaiser and the probability that a student has Mr. Mumaw each includes the probability that a student has both Mr. Kaiser and Mr. Mumaw.

We only wish to include the probability once so we subtract one of these probabilities.

For any two events A and BP(AUB) = P(A) + P(B) - P(A ∩ B)

A OR B

Kaiser or mumaw

Kaiser and mumaw

Example: A card is drawn at random from an ordinary pack of 52 playing cards. Find the probability that the card is red or an ace.

P(RUA) = P(R) + P(A) - P(RNA) = 26 + 4 - 2 = 28 = 7 n(R) = 26  $n(R \cap A) = 2$ n(A)= 4

Example: If A and B are two events such that  $P(A) = \frac{4}{5}$  and  $P(B) = \frac{3}{8}$  and Example: If A and B are two events such that  $P(A \cup B) = 3P(A \cap B)$  find...

a.  $P(A \cup B) = 3P(A \cap B)$  find...

b.  $P(A \cup B)' = P(A \cup B)'$ c.  $P(A \cup B)' = P(A \cup B)'$   $P(A \cup B)' = P(A \cup B)' = P(A \cup B)'$   $P(A \cup B)' = P(A \cup B)' = P(A \cup B)'$   $P(A \cup B)' = P(A \cup B)' = P(A \cup B)'$ 

a. 
$$P(A \cup B)$$

P(AUB) = P(A)+P(B)-P(ANR)

$$3x = \frac{4}{5} + \frac{3}{8} - x$$

$$4x = \frac{32}{40} + \frac{15}{40}$$

$$4\lambda = \frac{47}{40}$$
 $X = \frac{47}{160} = P(A \cap B)$ 
 $P(A \cup B) = 3P(A \cap B)$ 
 $= 3(47/160)$ 

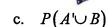
d.  $P(A' \cap B)$ 

$$P(A' \cap B) = P(B) - P(A \cap B)$$

$$\frac{3}{8} - \frac{47}{160}$$

$$\frac{60}{160} - \frac{47}{160} = \boxed{13}$$





$$P(A' \cup B) = P(B) + P(A \cup B)'$$

$$\frac{3}{8} + \frac{19}{160} = \frac{60}{160} + \frac{19}{160}$$

$$P(A') + P(A \cap B)$$
 $\frac{1}{5} + \frac{47}{160}$ 

$$\frac{32}{160} + \frac{47}{160} = \frac{79}{160}$$

ASSIGNMENT EXERCISES 3C

## Mutually Exclusive Events

What are mutually exclusive events?  $P(A \cap B) = 0$ events that cannot happen at the same time

Turning left and turning right Tossing a coin

In general if A and B are mutually exclusive, then  $P(A \cap B) = \bigcap$ 

$$P(A \cup B) = P(A) + P(B)$$

Example: A bag of Jolly Ranchers has various flavors. You pull a piece of candy out at random. The probability of pulling a cherry candy is  $\frac{5}{8}$ , and the probability of a grape candy is  $\frac{2}{8}$ . Are picking a cherry or grape candy mutually exclusive? Why? What is the probability of drawing neither a cherry or grape candy?

mutually exclusives yes - you can't pull two different flavors  $P(CUG) = \frac{5}{8} + \frac{2}{9} = \frac{45}{72} + \frac{16}{72} = \frac{61}{72}$ P((UG)' = 1-61 = 112

Pf. 76-77 #1-4 ASSIGNMENT EXERCISES 3D

## Section 3.3 Sample Space Diagrams

List the sample space for rolling two six sided die.

|     | 11    | 2   | 3   | 4   | 5    | 6   |
|-----|-------|-----|-----|-----|------|-----|
| - 1 | 1,1   | 1,2 | 1,3 | 1,4 | -    | 1,6 |
| 2   | 2,1   | 2,2 | 2,3 | 2,4 | 2,5  | 2,6 |
| 3   | 3,1   | 3,2 | 3,3 | 3,4 | 3, 5 | 3,6 |
| 4   | 4,1   | 4,2 | 4,3 |     | 4,5  | 4,6 |
| 5   | 5,1   | 5,2 | 5,3 | 5,4 | 5,5  | 5,6 |
| 6   | ارط أ | 6,2 | 6,3 | 6,4 | 6,5  | 6,6 |

ASSIGNMENT EXERCISES 3E

Pg. 79 #1-5