Logic Resource Sheet

This table is NOT given to you.

In symbols	This is called	Meaning	In set notation this is equivalent to
$p \wedge q$	conjunction	Both p and q at the same time	$A \cap B$, the intersection
$p \lor q$	disjunction	Either p or q , or both	$A \cup B$, the union
$p \veebar q$	exclusive disjunction	Either p or q , but not both	$A \cup B - A \cap B$
$p\!\Rightarrow\! q$	implication	One thing leads to another. In English it is usually stated as ' p implies q ' or 'if p then q '.	$A \subset B$, subset
$p \Leftrightarrow q$	equivalence	Each statement implies the other statement (like a two-way implies relationship)	A = B

The following table IS given to you, but WITHOUT the last row of explanation.

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \vee q$	$p \Rightarrow q$	$p \Leftrightarrow q$
T	T	F	T	T	F	T	Т
T	F	F	F	T	T	F	F
F	T	T	F	T	T	T	F
F	F	T	F	F	F	T	T
These are the four possible combinations of outcomes for the two propositions.		not p (the opposite of p)	both <i>p</i> and <i>q</i>	p or q or both p and q	p or q but not both	For this statement to be true, if p is true then q must also be true; if p is false then q can be either.	p and q should be the same for this to be true.

Summary of the Truth Table ~ NOT given to you.

Conjunctions (Λ) are only true when both statements are true.

Disjunctions (V) are true as long as at least one statement is true.

Exclusive Disjunctions (\underline{V}) are true when only one statement is true.

Implications (If \Rightarrow Then) are only false going from true to false.

Equivalence Statements (If and Only If \Leftrightarrow) are true when the statements have the same truth value.

Negations (\neg) have the opposite truth value