15.1 Random Variables

A Random Variable is a quantity whose value depends on chance. Random variables are represented by capital letters.

Here are some examples of random variables:

- X = the number of sixes obtained when a dice is rolled 3 times
- B = the number of babies is a pregnancy
- M = the mass of crisps in a packet
- T = the time taken for a runner to comlete 100m

There are two basic types of random variables:

1. Discrete Random Variables

- o These have a finite or countable number of possible values (e.g. X and B above)
- O Does not have to just positive integer values (e.g. shoe sizes of a set of students could have possible values of ...4, 4.5, 5, 5.5, 6, 6.5, ...)

2. Continuous Random Variables

o These can take on any value in some interval (e.g. M and T above)

Consider the discrete random variable X, the number of sixes obtained when a dice is rolled 3 times.

- You can write to represent "the probability that the number of sixes is x" where x can take the values 0, 1, 2, and 3.

Use capital letters for random variables.

Use lower case letters for the actual measured values.

We can find P(X=0), P(X=1)

Before calculators and computers random number tables were used to find random numbers. See page 520.

Probability distributions of discrete random variables

A probability distribution for a discrete random variable is a list of each possible value of the random variable and the probability that each outcome occurs.

Example: Let S be the random variable that represents the number of times a number less than 3 is rolled when a fair dice is rolled three times. Tabulate the probability distribution for S. 2/1= 43 Use a tree diagram to find the values of P(S=0), P(S=1), P(S=2), and P(S=3)

s	٥	(2	3
P(S=s)	8/27	12/27	6/27	1/27

 $\frac{13}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1$

Notice that in the example the sum of the probabilities is... me

For any random variable X

$$0 \le P(X = x) \le 1$$

$$\sum P(X=x)=1$$

Sometimes P(X = x) is replaced with just P(x) or P_x - these mean the same thing.

What does $0 \le P(X = x) \le 1$ and $\sum P(X = x) = 1$ mean?

La means that a probability must always be between 0+1

E P(X=x) means the sum of the probabilities will always be I.

Example: The random variable X has the probability distribution

- a. Find the value of q
- b. Find $P(X \ge 3)$

@ \(\text{P(x=x)=1}
59 + 39 + 69 + 9 = 1
15q = 1
(3)

x	1	2	3	4					
P(X=x)	5 <i>q</i>	3 <i>q</i>	6 <i>q</i>	q					
physin 1/3 5 2/5 1/15									
б	719			, ,					

Exercise 15A

Expectation

The <u>mean</u> or <u>expected Value</u> of a random variable X is the average value that we should expect for X over many trials of the experiment.

The mean or expected value of a random variable X is represented by E(X).

We would expect the mean to be the same in each case. Therefore we can find the mean or expected value of the random variable D by just multiplying each value of d by its respective probability (the equivalent of conducting the experiment just once).

The expected value of a random variable X is

$$E(X) = \sum x P(X = x)$$

Using the probability distribution for the even S in the first example. What is the expected value of S? First let's do this by hand and then we can do it on the GDC. $E(\kappa) = \sum_{n} \rho(\chi = 5) = O(8/27) + I(1^2/27) + O(8/27) +$

 $\frac{15B}{\cos 15B}$ = 0 + $\frac{12}{27}$ + $\frac{12}{37}$ + $\frac{3}{37}$

= 1 -> meaning if 3 die are rolled a large # of times, The expected mean of rolls less than 3 would be I.

Exercise 15B