Name: \qquad

Chapter 3 Day 1: Distance \& Midpoint Formulas, Equations of Lines, Parallel \& Perpendicular Lines. Worksheet

Do all your work on a separate piece of paper.

1. Find the midpoint of the line segments joining these pairs of points: $(-9,-7) \&(7,2)$
2. Find b given that $A(3,-2)$ and $B(b, 1)$ are $\sqrt{13}$ units apart.
3. Use the distance formula to determine if triangle $A B C$, where A is $(-2,0), B$ is $(2,1)$, and C is $(1,-3)$ is equilateral, isosceles, or scalene. Then determine if it is a right triangle.
4. Use the gradient-intercept form equation to find the equation of the straight line if:
a. it passes through the point $(1,-4)$ and has a gradient of 2
b. it passes through the points $(-1,2) \&(9,-3)$.
c. it passes through the point $(4,3)$ and is perpendicular to the line joining the points $(-1,3)$ and $(1,-1)$. Give the answer in the form $a x+b y+d=0$
5. Find t given that the line joining $A(1,-3)$ to $B(-2, t)$ is parallel to the line with gradient $1 \frac{1}{2}$. Then find t given that the same line is perpendicular to the line with gradient $1 \frac{1}{2}$.
6. The lines $p x+4 y-2=0$ and $2 x-y+p=0$ are perpendicular. Find the value of p.
7. Jalen monitors the amount of water in his rainwater tank during a storm.

a. How much water was in the tank before the storm?
b. When was it raining the hardest?
c. At what rate is the tank filling between C and D ?
d. What is the average water collection rate during the whole storm?
8. The illustrated circle has centre $(3,2)$ and radius 5 . The points $A(8,2)$ and $B(6,-2)$ lie on the circle.
a. Find the midpoint of chord $A B$.
b. Hence, find the equation of the perpendicular bisector of the chord in standard form $a x+b y+d=0$.
c. Show that this perpendicular bisector passes through the centre $(3,2)$. Hint: show that $(3,2)$ is on the line.

9. Farmer Huber has a triangular field with corners $A(-1,1), B(1,5)$, and $C(5,1)$. There are gates at M and N, the midpoints of $A B$ and $B C$ respectively. A straight path goes from M to N.

a. Use gradients to show that the path is parallel to AC.
b. Show that the path is half as long as the fence line AC.
