
CARTESIAN PLANE: A Cartesian plane is made up of a two dimensional flat surface that is divided into quadrants. These quadrants are the result of a plane divided by two straight 1105 intersecting at right angles and meeting at a point called the __origine

The horizontal axis is called the × - axis.

The vertical axis is called the _____ - axis

DISTANCE FORMULA: To find the distance between two points on a plane, given $P(x_1, y_1)$ and $Q(x_2, y_2)$ you use the formula:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

MIDPOINT FORMULA: To find the midpoint of a line segment connecting two points $P(x_1, y_1)$ and $Q(x_2, y_2)$ you use the formula:

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Example: Find the value of b, given that A(-4, 3) and B(b, 7) are $\sqrt{97}$ units apart. Distance.

$$\sqrt{(b-(-4))^2 + (7-3)^2} = \sqrt{97}$$

$$(b+4)^2 + 4^2 = 97$$

$$(b+4)^2 = 97-16$$

$$(b+4)^2 = 97-16$$

$$b+4=\pm 9$$

$$b+4$$

formula

booklet

SLOPE (GRADIENT) FORMULA: To find the slope of a line passing through two points $P(x_1, y_1)$ and $Q(x_2, y_2)$ you use the formula:

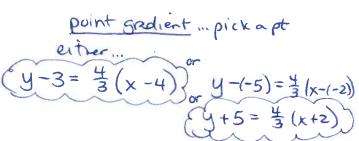
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\text{rise}}{\text{run}}$$

NOTE: SLOPE = GRADIENT IN IB TERMINOLOGY!!

Example: Find the gradient of the line passing through the points (4, 3) and (-2, -5).

$$\frac{-5-3}{-2-4} = \frac{-8}{-6} = \frac{4}{3}$$
 \(\text{leave as a reduced fraction}.

GRADIENT-INTERCEPT (Slope-Intercept) FORM: y = mx + c where m is the gradient


> says equation of straight line T

STANDARD FORM: ax + by + d = 0 where $m = -\frac{a}{b}$ y-intercept $= -\frac{d}{b}$ x-intercept $= -\frac{d}{a}$ \Rightarrow booklet

POINT-GRADIENT FORM: $y - y_1 = m(x - x_1)$ where m is the gradient & (x_1, y_1) is a point on the line.

Example: Write the equation of the line that passes through the points (4, 3) and (-2, -5) in point-gradient form, gradient-intercept form, and standard form.

Find slope first -5-3 = 4 (from above)

Gradient-interest either distribute last answer

plug in slope + a pt + solve for c

Standard form

around + get rid of fractions

(A should be owitive)

PARALLEL LINES:

Two straight lines are parallel if they have the same gradient. Conversely, two lines with the same gradient are parallel lines.

$$\ell_1 // \ell_2$$
 iff $m_1 = m_2$

PERPENDICULAR LINES:

If two lines are perpendicular, then the product of their gradients is -1. (gradients are negative reciprocals)

$$\ell_1 \perp \ell_2$$
 iff $m_1 \bullet m_2 = -1$ or $m_1 = -\frac{1}{m_2}$

Example: Determine whether the two lines given are parallel, perpendicular, or neither. Put in Slope int. form

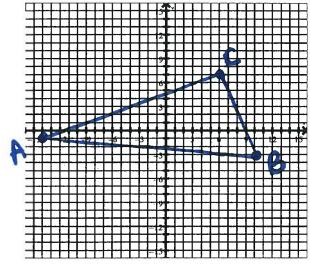
$$+28=0$$
 $3x+28=4y$ $3/4x+3$

$$\ell_2: 4x - 2y + 3 = 0$$
 $4x + 3 = 2y$

PERPENDICULAR BISECTOR: The perpendicular bisector of a line segment AB is the line that passes through the midpoint M of AB and is perpendicular to it.

Example: Find the equation of the perpendicular bisector of the line segment \overline{AB} , where

A = (1, 2) and B = (3, 1). Put your answer in ax + by + d = 0 form.


find m

Slipe of AB
$$\frac{1-2}{3-1} = -\frac{1}{2}$$

$$\perp$$
 slope $m=2$

Find pt Through M with m=2 Find M Slope of AB _____ slope y-3/2 = 2(x-2) $\frac{1-2}{3-1} = \frac{1}{2}$ y-3/2 = 2x-4

Example: Show that triangle ABC, where A is (-14, -1) B is (10, -3) and C is (6, 7) is a right triangle, by finding the slopes of the line segments AB, AC, and BC. Graph the triangle

To be a right triangle I must have two perpisides It looks like it would be at c.

$$\frac{7 - (-1)}{6 - (-14)} = \frac{7 + 1}{6 + 14} = \frac{8}{20} = \frac{2}{5}$$

$$m \text{ of BC}$$

$$\frac{7-(-3)}{6-10} = \frac{7+3}{6-10} = \frac{10}{-4} = \frac{5}{-2}$$

Since 3, - 5 are perp slopes Thus it is a night thanks! AC+BC formart angle

A POINT ON A LINE: If a point is on a line, when you plug it into the equation of the line, you will get a true statement.

Example: Find t if (3, t) lies on the line with equation 4x + 5y = -1

$$X=3$$
 $4(3)+5t=-1$ $5t=-13$
 $y=t$ $12+5t=-1$ $t=-13/5$

INTERCEPTS: Intercepts are where a line cuts off the x or y axis.

Example: Find where the line 5x - 3y - 12 = 0 cuts off the axes (basically... find the intercepts)

X-int:

$$5x-3(0)-12=0$$

 $5x-12=0$
 $5x=12=0$
 $5x=12=0$
 $5x=12=0$
 $5x=12=0$
 $-3y=12=0$
 $-3y=12=0$
 $-3y=12=0$

WRITING EQUATIONS OF LINES:

Example: Write the equation of the line in standard form ax + by + d = 0, given that the gradient is 5 and the y-intercept is -4.

$$c = -4$$
 $y = mx + C$ $0 = 5x - y - 4$ $m = 5$ $y = 5x - 4$

Example: Write the equation of the line in point slope form $y - y_1 = m(x - x_1)$ given that the line has a gradient of 3 and passes through the point (2, -1).

$$m=3$$
 $y-(-i)=3(x-2)$ $y=3x-7$ $y+1=3x-6$ $y=3x-9-7$

Example: Write the equation of the line in gradient-intercept form y = mx + c given that the line passes through the points (2, -5) and (7, -6).

Find 5 lope first
$$\frac{-6 - (-5)}{7 - 2} = \frac{-6 + 5}{7 - 2}$$
pick a pt and either...
$$y - (-5) = \frac{1}{5}(x - 2)$$
or
$$-5 = -\frac{1}{5}(2) + C$$

$$y + 5 = -\frac{1}{5}x + \frac{2}{5}$$

$$y = -\frac{1}{5}x - \frac{23}{5}$$
Example: Write the equation of the line that is perpendicular to the line $3x - 2y - 18 = 0$ and passes

through the point (-9, 3). Put your answer in standard form ax + by + c = 0.

through the point (-9, 3). Put your answer in standard form
$$ax + by + c = 0$$
.

first find slope:

$$3x-2y-18=0$$

$$3x-18=2y$$

$$3/2x-9=y$$

$$y-3=-\frac{2}{3}x-\frac{18}{3}$$

$$y-3=-\frac{2}{3}x-\frac{18}{3}$$

$$y-3=-\frac{2}{3}x-\frac{18}{3}$$

$$y-3=-\frac{2}{3}x-\frac{18}{3}$$

$$y-3=-\frac{2}{3}x-\frac{18}{3}$$

$$y-3=-\frac{2}{3}x-\frac{18}{3}$$

$$y-3=-\frac{2}{3}x-\frac{18}{3}$$

Example: The lines px - 6y + 6 = 0 and 2x + y + p = 0 are perpendicular. Find the value of p.

$$px-6y+6=0$$
 $2x+y+p=0$ Since they are perp if the 2nd equation $px+6=6y$ $y=-2x+p$ then the slope of the 1st equation $p/6x+1=y$ $m=-2$ $p=6(\frac{1}{2})$ $p=3$