Topic 6—Calculus

6.1	Derivative of $f(x)$	$y = f(x)$ \Rightarrow $\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$
6.2	Derivative of x^n	$f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$
	Derivative of $\sin x$	$f(x) = \sin x \implies f'(x) = \cos x$
	Derivative of $\cos x$	$f(x) = \cos x \Rightarrow f'(x) = -\sin x$
	Derivative of tan x	$f(x) = \tan x \implies f'(x) = \frac{1}{\cos^2 x}$
	Derivative of e ^x	$f(x) = e^x \implies f'(x) = e^x$
	Derivative of $\ln x$	$f(x) = \ln x \Rightarrow f'(x) = \frac{1}{x}$
	Chain rule	$y = g(u), u = f(x) \implies \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
	Product rule	$y = uv \implies \frac{\mathrm{d}y}{\mathrm{d}x} = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x}$
	Quotient rule	$y = \frac{u}{v} \implies \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$
6.4	Standard integrals	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$
		$\int \frac{1}{x} \mathrm{d}x = \ln x + C, \ x > 0$
		$\int \sin x \mathrm{d}x = -\cos x + C$
		$\int \cos x \mathrm{d}x = \sin x + C$
		$\int e^x dx = e^x + C$
6.5	Area under a curve between $x = a$ and $x = b$	$A = \int_{a}^{b} y \mathrm{d}x$
	Volume of revolution about the <i>x</i> -axis from $x = a$ to $x = b$	$V = \int_{a}^{b} \pi y^{2} \mathrm{d}x$
6.6	Total distance travelled from t_1 to t_2	$distance = \int_{t_1}^{t_2} v(t) dt$