14.4 Revisiting linear motion

_			•				
К	emind	ler	of	kin	em	atics	:

Displacement function: s (t)

Acceleration: _ S (t

Total distance traveled from t_1 to $t_2 = S_{t_1}^{t_2} | V(t) | C(t) | C(t$

initially: $\underline{t} = 0$ At rest: $\underline{V(t)} = 0$

initially at rest:

Moving right/up:

Example 10: A particle moves along a horizontal line. The particle's displacement, in meters, from an origin O is given by $s(t) = 5 - 2\cos 3t$ for time t seconds.

a.) Find the particle's velocity and acceleration at any time t.

$$-2(-\sin(3t))-3$$

v'(t) = a(t)-2(-sin(3t))-3 $b((6(3t))\cdot 3$

$$S(0) = 5 - 2\cos 3(0)$$
 $V(0) = 6\sin 3(0)$ $Q(0) = 18\cos 3(0)$

c.) Find when the particle is moving to the right, to the left, and stopped during the time $[0,\pi]$

t=0, #/3, 25 T

Stopped 2

Sin 3t = 0 0. 3 = 3 3t = 0 3t = $3t = 2\pi$ 3t = 3π Right $(0, \pi/3) \cup (2\pi/3, \pi)$ Left (#/3, 2 / /3)

d.) Write down a definite integral that represents the total distance traveled for $[0,\pi]$ seconds and use a GDC to find the distance.

$$[S_0^{\pi/3} V(t)dt] + |S_{\pi/3}^{2\pi/3} V(t)dt| + |S_{\pi/3}^{\pi} V(t)dt| + |S_{\pi/3}^{\pi} V(t)dt| + |S_{\pi/3}^{\pi} V(t)dt| + |S_{\pi/3}^{\pi} V(t)dt|$$

Example 11: A particle moves along a straight line so that its velocity, v ms⁻¹ at time tseconds is given by $v(t) = 5\sin t \cos^2 t$. (5) A PUF 11/6

a.) Find the speed of the particle when $t = 5\pi/6$ seconds.

Speed =
$$|V(t)| = |V(5\pi/6)| = 5 \sin \frac{5\pi}{6} (\cos \frac{5\pi}{6})^2$$

 $5 (1/2)(-\sqrt{3}/2)^2$
 $5 (1/2)(3/4)$

b.) When t = 0, the displacement, s, of the particle is 3m. Find an expression for s in terms of t.

$$S(0) = 3$$

$$S(t) = \int 5\sin t (\cos t)^{2} dt$$

$$U = \cot \qquad = 5\int u^{2} \sin t dt$$

$$- \int \int u^{2} du$$

$$- \int u^{2} \int u^{2} du$$

$$- \int u^{$$

$$a(t) = V'(t)$$

$$v(t) = 5 \sin t \cos^2 t \quad \text{product dain rule}$$

$$V'(t) = 5 \left[\cos t \cdot \cos^2 t + 5 \sin t \cdot 2 \cot \cdot -5 \sin t \right]$$

$$5 \left[\cos^3 t - 2 \cot 5 \sin^2 t \right]$$

$$a(t) = 5 \cot \left[\cos^2 t - 2 \sin^2 t \right]$$