14.3 Integral of sine and cosine (2 days)

Example 6: Find the integrals.

a.) $\int 3 \sin x d x$
b.) $\int \cos (4 x-6) d x$
c.) $\int \mathrm{e}^{\mathrm{x}} \sin \left(e^{x}\right) d x$
d.) $\int x^{3} \cos \left(3 x^{4}\right) d x$

Example 7: Evaluate the definite integral without a GDC to get the exact value. Then check your answer by evaluating the definite integral on the GDC.
a.) $\int_{0}^{\pi / 4} 2 \cos x d x$
b.) $\int_{\pi / 4}^{\pi / 2} \sin (2 \mathrm{x}) \cos ^{3}(2 x) d x$

Remember that we can use a definite integral to represent an area bounded by a curve and the x axis and can also find the volume obtained by rotating the object 360°. (See 9.6 Notes for help.)

Example 8: A portion of the graph of $f(\mathrm{x})=\mathrm{x} \sin \mathrm{x}$ is the diagram on page 509.
a.) Find the area of the shaded region. (use a GDC).

b.) Write down the integral representing the volume of the solid formed when the shaded region is rotated 360° about the x-axis. Hence, find the volume of the solid. (You can use a GDC).
Also remember that we can find the area between two curves.
If $\mathrm{y}_{1} \geq \mathrm{y}_{2}$ for all x in $\left[\mathrm{a}, \mathrm{b}\right.$, then $\int_{\mathrm{a}}^{\mathrm{b}}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)$ dx is the area
between the two curves. (TOP - BOTTOM)

Example 9: Find the area of the region in quadrant 1 that is bounded by the curves $\mathrm{y}=0.4 \mathrm{x}$ and $\mathrm{y}=\sin \mathrm{x}$. (You may use a GDC).

