

Example 6: Find the integrals.

a.) $\int 3 \sin x \, dx$

b.) $\int \cos(4x-6) dx$

c.) $\int e^x \sin(e^x) dx$

d.) $\int x^3 \cos(3x^4) dx$

Example 7: Evaluate the definite integral without a GDC to get the exact value. Then check your answer by evaluating the definite integral on the GDC.

a.) $\int_0^{\pi/4} 2\cos x \, dx$

b.) $\int_{\pi/4}^{\pi/2} \sin(2x) \cos^3(2x) dx$

Remember that we can use a definite integral to represent an area bounded by a curve and the xaxis and can also find the volume obtained by rotating the object 360°. (See 9.6 Notes for help.)

Example 8: A portion of the graph of $f(x) = x \sin x$ is the diagram on page 509.

a.) Find the area of the shaded region. (use a GDC).

b.) Write down the integral representing the volume of the solid formed when the shaded region is rotated 360° about the x-axis. Hence, find the volume of the solid. (You can use a GDC).

Also remember that we can find the area between two curves. If $y_1 \ge y_2$ for all x in [a,b], then $\int_a^b (y_1 - y_2) dx$ is the area between the two curves. (TOP - BOTTOM)

Example 9: Find the area of the region in quadrant 1 that is bounded by the curves y = 0.4x and $y = \sin x$. (You may use a GDC).